深度学习(DL)技术被回归问题所接受。最近在该领域发表的论文数量越来越多,包括调查和评论,表明,由于效率和具有高维数据的系统的良好精度,深层回归引起了社区的关注。但是,许多DL方法具有复杂的结构,这些结构对人类用户不易透明。访问这些模型的可解释性是解决敏感领域问题(例如网络安全系统,医疗,金融监视和工业过程)的重要因素。模糊逻辑系统(FLS)是可解释的模型,在文献中众所周知,能够通过具有成员资格学位的语言术语对复杂系统使用非线性表示,模仿了人类的思想。在可解释的人工智能的气氛中,有必要考虑开发智能模型的准确性和可解释性之间的权衡。本文旨在调查结合DL和FL的现有方法的最新方法,即深度模糊系统,以解决回归问题,配置当前在文献中尚不充分探索的主题,因此应进行全面调查。
translated by 谷歌翻译
This contribution demonstrates the feasibility of applying Generative Adversarial Networks (GANs) on images of EPAL pallet blocks for dataset enhancement in the context of re-identification. For many industrial applications of re-identification methods, datasets of sufficient volume would otherwise be unattainable in non-laboratory settings. Using a state-of-the-art GAN architecture, namely CycleGAN, images of pallet blocks rotated to their left-hand side were generated from images of visually centered pallet blocks, based on images of rotated pallet blocks that were recorded as part of a previously recorded and published dataset. In this process, the unique chipwood pattern of the pallet block surface structure was retained, only changing the orientation of the pallet block itself. By doing so, synthetic data for re-identification testing and training purposes was generated, in a manner that is distinct from ordinary data augmentation. In total, 1,004 new images of pallet blocks were generated. The quality of the generated images was gauged using a perspective classifier that was trained on the original images and then applied to the synthetic ones, comparing the accuracy between the two sets of images. The classification accuracy was 98% for the original images and 92% for the synthetic images. In addition, the generated images were also used in a re-identification task, in order to re-identify original images based on synthetic ones. The accuracy in this scenario was up to 88% for synthetic images, compared to 96% for original images. Through this evaluation, it is established, whether or not a generated pallet block image closely resembles its original counterpart.
translated by 谷歌翻译
We present a human-in-the-loop evaluation framework for fact-checking novel misinformation claims and identifying social media messages that violate relevant policies. Our approach extracts structured representations of check-worthy claims, which are aggregated and ranked for review. Stance classifiers are then used to identify tweets supporting novel misinformation claims, which are further reviewed to determine whether they violate relevant policies. To demonstrate the feasibility of our approach, we develop a baseline system based on modern NLP methods for human-in-the-loop fact-checking in the domain of COVID-19 treatments. Using our baseline system, we show that human fact-checkers can identify 124 tweets per hour that violate Twitter's policies on COVID-19 misinformation. We will make our code, data, and detailed annotation guidelines available to support the evaluation of human-in-the-loop systems that identify novel misinformation directly from raw user-generated content.
translated by 谷歌翻译
We leverage path differentiability and a recent result on nonsmooth implicit differentiation calculus to give sufficient conditions ensuring that the solution to a monotone inclusion problem will be path differentiable, with formulas for computing its generalized gradient. A direct consequence of our result is that these solutions happen to be differentiable almost everywhere. Our approach is fully compatible with automatic differentiation and comes with assumptions which are easy to check, roughly speaking: semialgebraicity and strong monotonicity. We illustrate the scope of our results by considering three fundamental composite problem settings: strongly convex problems, dual solutions to convex minimization problems and primal-dual solutions to min-max problems.
translated by 谷歌翻译
Despite the impact of psychiatric disorders on clinical health, early-stage diagnosis remains a challenge. Machine learning studies have shown that classifiers tend to be overly narrow in the diagnosis prediction task. The overlap between conditions leads to high heterogeneity among participants that is not adequately captured by classification models. To address this issue, normative approaches have surged as an alternative method. By using a generative model to learn the distribution of healthy brain data patterns, we can identify the presence of pathologies as deviations or outliers from the distribution learned by the model. In particular, deep generative models showed great results as normative models to identify neurological lesions in the brain. However, unlike most neurological lesions, psychiatric disorders present subtle changes widespread in several brain regions, making these alterations challenging to identify. In this work, we evaluate the performance of transformer-based normative models to detect subtle brain changes expressed in adolescents and young adults. We trained our model on 3D MRI scans of neurotypical individuals (N=1,765). Then, we obtained the likelihood of neurotypical controls and psychiatric patients with early-stage schizophrenia from an independent dataset (N=93) from the Human Connectome Project. Using the predicted likelihood of the scans as a proxy for a normative score, we obtained an AUROC of 0.82 when assessing the difference between controls and individuals with early-stage schizophrenia. Our approach surpassed recent normative methods based on brain age and Gaussian Process, showing the promising use of deep generative models to help in individualised analyses.
translated by 谷歌翻译
Recent studies have revealed that, beyond conventional accuracy, calibration should also be considered for training modern deep neural networks. To address miscalibration during learning, some methods have explored different penalty functions as part of the learning objective, alongside a standard classification loss, with a hyper-parameter controlling the relative contribution of each term. Nevertheless, these methods share two major drawbacks: 1) the scalar balancing weight is the same for all classes, hindering the ability to address different intrinsic difficulties or imbalance among classes; and 2) the balancing weight is usually fixed without an adaptive strategy, which may prevent from reaching the best compromise between accuracy and calibration, and requires hyper-parameter search for each application. We propose Class Adaptive Label Smoothing (CALS) for calibrating deep networks, which allows to learn class-wise multipliers during training, yielding a powerful alternative to common label smoothing penalties. Our method builds on a general Augmented Lagrangian approach, a well-established technique in constrained optimization, but we introduce several modifications to tailor it for large-scale, class-adaptive training. Comprehensive evaluation and multiple comparisons on a variety of benchmarks, including standard and long-tailed image classification, semantic segmentation, and text classification, demonstrate the superiority of the proposed method. The code is available at https://github.com/by-liu/CALS.
translated by 谷歌翻译
There is an increasing need in our society to achieve faster advances in Science to tackle urgent problems, such as climate changes, environmental hazards, sustainable energy systems, pandemics, among others. In certain domains like chemistry, scientific discovery carries the extra burden of assessing risks of the proposed novel solutions before moving to the experimental stage. Despite several recent advances in Machine Learning and AI to address some of these challenges, there is still a gap in technologies to support end-to-end discovery applications, integrating the myriad of available technologies into a coherent, orchestrated, yet flexible discovery process. Such applications need to handle complex knowledge management at scale, enabling knowledge consumption and production in a timely and efficient way for subject matter experts (SMEs). Furthermore, the discovery of novel functional materials strongly relies on the development of exploration strategies in the chemical space. For instance, generative models have gained attention within the scientific community due to their ability to generate enormous volumes of novel molecules across material domains. These models exhibit extreme creativity that often translates in low viability of the generated candidates. In this work, we propose a workbench framework that aims at enabling the human-AI co-creation to reduce the time until the first discovery and the opportunity costs involved. This framework relies on a knowledge base with domain and process knowledge, and user-interaction components to acquire knowledge and advise the SMEs. Currently,the framework supports four main activities: generative modeling, dataset triage, molecule adjudication, and risk assessment.
translated by 谷歌翻译
Current abstractive summarization systems present important weaknesses which prevent their deployment in real-world applications, such as the omission of relevant information and the generation of factual inconsistencies (also known as hallucinations). At the same time, automatic evaluation metrics such as CTC scores have been recently proposed that exhibit a higher correlation with human judgments than traditional lexical-overlap metrics such as ROUGE. In this work, we intend to close the loop by leveraging the recent advances in summarization metrics to create quality-aware abstractive summarizers. Namely, we propose an energy-based model that learns to re-rank summaries according to one or a combination of these metrics. We experiment using several metrics to train our energy-based re-ranker and show that it consistently improves the scores achieved by the predicted summaries. Nonetheless, human evaluation results show that the re-ranking approach should be used with care for highly abstractive summaries, as the available metrics are not yet sufficiently reliable for this purpose.
translated by 谷歌翻译
盲源分离(BSS)算法是无监督的方法,通过允许物理有意义的数据分解,它们是高光谱数据分析的基石。 BSS问题不足,解决方案需要有效的正则化方案,以更好地区分来源并产生可解释的解决方案。为此,我们研究了一种半监督的源分离方法,在这种方法中,我们将预测的交替最小二乘算法与基于学习的正则化方案结合在一起。在本文中,我们专注于通过使用生成模型来限制混合矩阵属于学习的歧管。总而言之,我们表明,这允许具有创新的BSS算法,具有提高的精度,可提供物理上可解释的解决方案。在涉及强噪声,高度相关的光谱和不平衡来源的挑战性场景中,对现实的高光谱天体物理数据进行了测试。结果突出了在减少来源之间的泄漏之前,学到的重大好处,这可以使总体上更好的分解。
translated by 谷歌翻译
本文考虑了在线配置器通常使用的一组替代方案中学习用户偏好的任务。在许多设置中,学习者在过去的互动过程中只有一组选定的替代方案。Fargier等。[2018]提出了一种在这种环境中学习用户偏好模型的方法,该模型对先前选择的替代方案进行了排名尽可能高;以及在这种情况下学习的算法,是一种特定的偏好模型:词典偏好树(LP-Trees)。在本文中,我们研究了与这种方法相关的复杂性理论问题。我们对学习LP-Tree的样本复杂性给出了上限,这在属性数量上是对数。我们还证明,计算最小化经验风险的LP树当仅限于线性LP-Trees的类别时,可以在多项式时间内完成。
translated by 谷歌翻译